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1. Project Motivation and Overview 
Many current social network analytic methods work by analyzing a static aggregate 
graph, which provides a limited view of the structure and behavior of real-world 
social networks. Social networks in reality are dynamic and evolve over time as 
people join or leave the networks and new connections form. Analyzing a static 
aggregate of such a network will at best provide an analyst with a historical view of 
what happened with the network at the time the data was collected, rather than 
provide the predictive power on how it may look tomorrow or in the future.   At 
worst, such aggregate networks provide a completely skewed view of the true 
dynamics of a social network to the point where social network analysis will identify 
the wrong people as influencers or leaders in the network, thereby wasting the 
valuable time of analysts and leading to targeting the wrong people for further 
study.   Finally, social networks are complex networks which often contain multiple 
types of relationships and entities—for example people can be related through 
going to the same event, staying at the same motel, working in the same group, etc.   
Current Social Network Analysis (SNA) techniques cannot readily handle these 
complexities and the collapsing of the complex networks to simpler homogeneous 
(single-entity, single-relation) networks lose significant and crucial information, 
again leading to skewed analytic results. 

In particular, we will focus on developing new and novel ways to analyze dynamic 
networks to address the shortcomings of current SNA techniques on static 
aggregate networks including: 

1) Who influences whom?  Static aggregate networks provide skewed answers. 
2) Enhanced community detection algorithms to find communities in dynamic 

networks (a hopeless task on the static aggregate network). 
3) Develop predictive models to track and forecast the evolution of 

communities and individuals: how does influence and communities change 
over time. 

The research proposed in this effort seeks to directly address these three short-
comings by researching and developing dynamic social network analysis (DSNA) 
methods to explicitly model time and heterogeneity.   We will specifically be focusing 
on three objectives: 

1) Develop dynamic SNA metrics and methods which take time into account. 
2) Develop predictive methods for modeling and predicting how individuals 

and groups change over time, both leveraging the new metrics developed 
as well as using current SNA metrics as applicable. 

3) Extend the above two techniques to be directly applicable on 
heterogeneous networks. 
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The result of this research will be threefold: first, our dynamic social network 
metrics will take time into account and provide improved identification of 
influencers and leaders in a social network; second, we will develop new predictive 
models which provide estimates of how individuals and groups will evolve over 
time, giving analysts crucial situational awareness and the ability to be pre-emptive 
rather than reactionary.   Our third objective will further improve the efficacy of out 
methods by being able to directly analyze the complex networks rather than rely on 
initial simplifications to homogeneous networks.   The third objective fits directly 
into the work path of objectives 1 and 2 and is therefore not a separate task. 

More concretely, our planned effort consisted primarily of these two high-level 
tasks: 

1) Develop and evaluate dynamic SNA metrics and methods which take time 
into account.  Specifically, we will extend the Bonacich Centrality metric to 
take time into account, then use the new metric to develop a community 
detection method. 

2) Develop and evaluate predictive methods for modeling and forecasting how 
individuals and groups change over time, both leveraging the new metrics 
developed as well as using current SNA metrics as applicable.   We will model 
this as a machine learning task where we have a stream of metrics over time, 
where the task is to infer a predictive model which predicts with some 
accuracy how the metrics will change in the next time step(s). 

2. Project Status 
The effort started in March 2011 and we had the EVOLVE kick-off meeting at AFRL 
on May 13, 2011.   We have been making good progress since the beginning of the 
project and the work produced follows the original timeline.  As such, we are on 
track with respect to what we had planned at this stage in the effort. 

The effort ended early due to the acquisition of the prime contractor. 

The rest of the document outlines the work performed for each of the two primary 
tasks. 

3. Metrics in Dynamic Networks 

3.1. Centrality in Dynamic Networks 
Real-world social networks are dynamic in nature, since their topology can change 
over time with addition or removal of edges. Figure 1 shows four snapshots of a 
hypothetical dynamic network, with only connected nodes displayed. A common 
method to analyze such a dynamic network is to create a static network, shown in 
Figure 1(b), that aggregates edges observed at all times. However, aggregation loses 
important temporal information that can help elucidate the dynamic structure of the 
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network. The toy example could represent travelers who interact with others in 
different parts of the world. If one person becomes infected (with a pathogen, or 
receives some information), he can transmit the pathogen (or information) to 
temporal neighbors in other places. Whether or not the disease (information) will 
spread, how far and how quickly, who should be immunized to stop it, depends on 
both in the nature of interactions between people in a social network and on 
how the edges in the network evolve over time. Treating the network as a static 
aggregate of all edges leads to wrong answers to these questions. 

 

  
(a) (b) 

Figure 1: Example network. (a) Snapshots of the network showing only connected nodes at 
times t1; t2; t3 and t4. (b) A static network that aggregates snapshots into a single network. 

 
Dynamic topology will affect how information flows on a network through interpersonal 
interactions. For a flow to reach one node from another in a dynamic network, there must 
exist a path that connects the source and destination nodes through intermediaries at 
different points in time. Consider a walk from node 1 to 5 in Figure 1. In the static 
network, there are three acyclic paths from 1 to 5: 1245, 12345, and 
1235. Not all these paths are physically realizable, however. A walk cannot go 
from node 1 to node 2 at t1 to node 4 at t2, because an edge 24 does not exist at t2. 
There exists only one path a walk can follow over the period t1–t4, namely 
12345. 
 
Using this intuition we recently introduced a novel generalization of Bonacich’s Alpha-
centrality for dynamic networks. It measures centrality of a node by the number of paths 
that connect it to other nodes through time-dependent edges. A distinctive feature of this 
metric is that it is parameterized by factors that set both time and length scale of 
interactions. These parameters can be estimated from data in some cases. In an 
independent evaluation performed this year at MIT Lincoln Labs, Dynamic Centrality 
was shown to outperform other metrics in dynamic network analysis. 

3.2. Time-aware Dynamic Centrality 
Like many other metrics, Dynamic Centrality suffers from recency bias, failing to 
recognize important new nodes that have not had as much time to accumulate links as 
their older counterparts or temporal order in which links are created. 
 
We studied the problem of time-aware ranking in dynamic networks, specifically citation 
networks in which nodes are scientific papers and edges are citation links to older papers. 
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We proposed a time-aware version of dynamic centrality that properly discounts older 
papers while still taking the dynamic nature of the network into account.  
 

 
 

Figure 2: Comparison of importance metrics on Hep-Th data set with different partitions of 
data. Table on the right lists the metrics used in the evaluation.  
 
We evaluated our approach on large real-world scientific papers citation networks by 
seeing how well it predicts papers’ future importance.  Figure 2 shows prediction results 
for the HEP-TH data set (10 years of papers from the theoretical physics section of 
arxiv.org). Time-aware dynamic centrality metric (ECM in Figure 2) is more appropriate 
for identifying important papers that will attract more citations in the future. 

3.3. Dynamics-aware Social Proximity in Networks 
The structure of social networks contains information useful for predicting human 
activity. People who are “close” in some sense in a social network are more likely to 
perform similar actions than more distant people. In a recent work we used social 
proximity to capture the degree to which people are “close” to each other within a social 
network. In addition to standard proximity metrics defined for the link prediction task, 
such as neighborhood overlap (i.e., number of common neighbors), we introduced novel 
social proximity metrics that take into account the nature of interactions. 
 
One can think of social proximity as measuring how readily information can be 
exchanged between two people even in the absence of a direct connection between them. 
The greater the number of paths connecting the two people, the greater the potential for 
information exchange; therefore, the closer they are. However, the degree to which 
information can reach one person from another depends not only on network topology, 
but also on how information (or influence) flows through the network. Consider a 
network in which people communicate via phone calls. Each person chooses one of her 
friends and places a call to her. Such one-to-one interactions can be modeled as a random 
walk; therefore, metrics based on the random walk, such as conductance, are appropriate 
as a measure of social proximity. However, the spread of information in social media is 
fundamentally different and cannot be modeled as a random walk. Rather than picking 
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one neighbor to transmit a message to, a user broadcasts the message to all her 
neighbors. Other examples of such one-to-many processes include epidemics and 
innovation spread. However, a social media user's capacity to respond to an incoming 
message is limited by her finite attention, which she must divide over all her friends. As a 
consequence, the more friends a user has, the less likely she is to respond to an arbitrary 
message from a friend. This alters the character of the flow and, therefore, how close two 
people can be considered to be. We have been able to quantify this effect of divided 
attention on the information spreading behavior on Twitter. 
 

  
Digg Twitter 

Figure 3: Predicting user activity (which URLs users will share) on Digg and Twitter. 
Results are reported as %lift over baseline, which uses (unweighted) friends activity to 
predict user activity. 

 
We recently proposed novel metrics for social proximity that take attention-limited nature 
of information flow in social media into account. We evaluate the metrics on the activity 
prediction task, specifically to predict which URLs users will share on Digg and Twitter. 
These social media sites allow users to post URLs to online content, and other users to 
share them with others by voting for them (on Digg) or retweeting them (on Twitter). 
Both sites also allow users to follow activities of friends, creating a directed network we 
refer to as the follower graph. Friends' activity has been shown to be a useful predictor of 
user activity in social media. People tend to vote for stories their friends vote for on Digg, 
use the same tags and favorite the same images as friends on Flickr, and so on.  We claim 
that social proximity can help better predict user activity. Users who are close to each 
other in the follower graph are more likely to act in similar ways because they share the 
same information, have similar tastes and attributes, or participate in the same 
community. Moreover, knowing the actions of some people allows us to better predict the 
actions of others who are close to them in the network. In a series of experiments using 
public Digg and Twitter data, we demonstrated that taking into account social proximity 
leads to better predictions, but only for attention-limited measures of proximity.  These 
findings suggest an important role that attention plays in social media interactions. 
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4. Predictive Models for Dynamic Networks 
This part of the effort is focused on studying how dynamic network analysis metrics 
change in time and leveraging this information to predict network trends.   
Specifically, we will study how temporal information can be used to improve our 
ability to predict the evolution of influential nodes and groups.  We will cast this 
problem as a machine learning problem, where we induce a predictive model which 
takes as input the last k observations (in time) and forecasts the most likely next 
value for a specific metric value such as the influence of a specific individual in the 
network. 

4.1. Understanding Social Dynamics 

4.1.1. Modeling Retweet Behaviors 
We studied what drives certain information diffusion processes in social media 
[Macskassy 2011]. In particular, we studied a set of Twitter users over a period of a 
month and sought to explain the individual information diffusion behaviors, as 
represented by retweets, in this domain. 

We hypothesized that knowing more about the user and the content would allow us 
to develop richer models which would take profiles and tagging into account. 
Specifically, we took an approach to tag Tweets with Wikipedia categories and 
aggregate these tags for a particular user to generate a topics-of-interest profile for 
users [Michelson and Macskassy, 2010].  We used these profiles to model retweeting 
behaviors based on similarities between users and the tweets they retweeted. 

We explored four retweeting models, two of which were based on user profiles.   
The models for predicting retweeting were: 

1) General model based only on time: 

 
2) Networking model, where the only factor was whether users had 

communicated within the last 24 hours: 

 
3) Topic model, where the similarity of a user’s profile and the topic of a tweet 

was the key indicator: 

 
4) Profile (or homophily) model, where the similarity between a user’s profile 

and that of the profile of the Twitter user originating a tweet was the key 
indicator: 

 

15.1
gm )(2.0)( −⋅= xtimexP
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We found that indeed the homophily-based propagation models were better at 
explaining the majority retweet behaviors we saw in our data as shown in Table 1. 

 
Table 1: Ratio of users whose overall retweet behavior was 

best explained by each of the four models. 

 

When digging deeper, however, we found that all four models were used at different 
times and that user retweeting behaviors, when considering each retweet, were best 
explained by multiple models.   In fact, we found that we got the best overall fit to 
the data if user behaviors were a modeled as a combination of all four models as 
shown in Table 2. 

 
Table 2: How many models were needed to "best" fit the observed 

behavior of a user?  As we can see, many users required a combination 
of three or four of our models to best explain their behaviors.  

 

This work is a first step into exploring how to leverage content to generate profiles 
and context in social media, in order to get a deeper understanding of what drives 
people to propagate or diffuse information. Specifically, we focused on modeling 
individual microcosm behavior rather than general macro-level processes. 

4.1.2. Extracting and Analyzing Social Dialogues 
We studied in some detail the behavior and dynamics of dialogues in Twitter 
[Macskassy 2012]. In particular, we wanted to understand user interaction 
behaviors, the characteristics of the dialogues people where having and the 
structure of the emerging social network generated by these interactions. 
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The first part of out study focused on how to define and extract dialogues.   We show 
in Figure 4 our process for extracting dialogues, where the only variable is k, the 
number of minutes between an observed direct link (a tweet mention) between two 
users.  For example, a dialogue between A and B occurs if and only if A mentions B, 
then B mentions A and then A mentions B again, where the maximum delay between 
mentions is k minutes.  We explored different values of k (from 1 to 9 minutes) and 
saw qualitatively the same results (fewer dialogues, but same patterns), so we used 
k=5 in our study. 

      
Figure 4: How to extract dialogues from Twitter streams 

 

We found that most people either do not have dialogues or spend about 10% of 
their Twitter activity in direct interaction with other users.  However, we also found 
that 13% of all tweets in our data were dialogues as shown in Table 3. Of these 
dialogues, we found that 12% were converted from mentions. 

 
Table 3: Break-up of Tweets by categories 

 

We found that the vast majority (over 92%) of dialogues were between two people; 
about 6% of dialogues were between three people with marginal fractions for larger 
groups (see Table 4). 
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Table 4: Distribution of different dialogue sizes and the number 
of tweets in those dialogues. 

 

When analyzing the dialogues, we saw a very strong trend for dialogues involving 
larger number of people tended to not be well-connected although reciprocity was 
always very high.   In other words, although the active dialogue included many 
people, most explicit interactions were along a few direct mentions.  However, we 
also found that users were very equitable in their interactions, giving and receiving 
in equal amounts. Interestingly, we found that users were in dialogues with many 
different people over time but still tended to primarily interact with only a few.   
This suggested that while the social network would be relatively large, there would 
be clear strong communities of smaller sizes.  We see this clearly in Figure 5. 

 
Figure 5: Social network.  We clearly see strongly connected communities which are loosely 

connected.   The colors represent communities found by standard modularity clustering 
techniques. 
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Taking a closer look at the sub-communities identified, we found that these looked 
like one would expect from a social network (see Figure 6). 

 

     
Figure 6: Example sub-communities.  These structures look more what a standard social 

network is expected to look like. 

 

Clearly this work is still indicative of how we should think about and analyze 
dynamic networks, but it is a first step towards understanding how to extract salient 
social networks from dynamic interaction streams such as Twitter. 

4.2. Dynamic Network Prediction 
Per our planned tasks, we started exploring explicit predictive models using 
machine learning towards the end of Year 1 (and towards the end of the funded 
effort).  

Specifically, we started preliminary work on framing evolution as a machine 
learning problem, where we want to predict future network behavior.  Our first 
study focused on predicting whether a community was likely to continue, split or 
disappear in the next time-step (or whether a node was likely to stay or leave a 
community in the next time-step).   In order to do so, we identified two data sets 
which seemed interesting: the Enron email data set and the World-trade data set.  
These two data sets were interesting because we have some notion of what the 
ground truth looks like based on historical facts (world trade: which countries have 
traded strongly with each other over the past 40 years; Enron: what are the cliques 
of people speaking with each other over a two year span).   The World-trade data 
comes in yearly snapshots so the time-step is pre-defined.   The Enron email data is 
a stream (each email has a unique time-stamp), so we used one-month snapshots to 
get a fair amount of snapshots to analyze. 

The process we used for our machine learning was as follows: 
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1) For each snapshot, use community detection (modularity clustering) to 
identify the communities in that time-step. 

2) For each community, compute various node- and community-metrics such as 
centrality scores.  For nodes, we computed metrics such as closeness, 
betweenness, degree, number of closed triangles, etc.  For communities, we 
computed metrics such as density, number of triangles, in-degree and out-
degree (total number of internal edges vs. number of edges going to other 
communities). 

3) For each snapshot, we labeled each the community based on what happened 
in the subsequent step.   For community A in step t, we found community B in 
step t+1 with the highest overlap. 

a. If the overlap was more than 65% in both A and B, then we labeled 
this as a continuing community. 

b. If more than 65% of A moved into B, then we labeled A as merging 
into B.  

c. If A had two or more sub-groups (each more than 30% of A) 
continuing, then we said that A split. 

d. Otherwise was said that A dissolved. 
4) We did a similar process with each node, labeling it either as staying in a 

community or leaving a community. 
5) At each time step, we had labels for each community and each node.  We 

explored different machine learning techniques to understand whether we 
could do any learning in this setup. 

a. We used the metrics at time step t to predict next step.  
b. We used the trend over the last 1, 2 and 3 time-steps (for each metric) 

as well.  This is a standard sliding window approach in machine 
learning. 

Our results, though preliminary, indicate that we can do some learning in this setup.   
Specifically, we were able to get AUC scores in the 0.6 to 0.9 range in these 
prediction tasks.  However, we do not yet feel comfortable reporting hard results as 
these numbers are still early and we need to better understand what they mean and 
how reliable they are.  We intend to strengthen this work and generate a technical 
paper within the next two months, with the aim of submitting it to a technical venue. 

5. Developing benchmark data sets 
Finally, one of the core risks identified in our proposal was the dynamic network 
analysis as we perform it in this effort has a distinct lack of data sets.   We spent time 
identifying potential data sets, including ways of taking existing data sets and 
converting them into dynamic network benchmark data sets. 

We looked at a variety of data sets, some of which we used in our work, and some of 
which is still work-in-progress. 

Twitter data: We have been collecting a variety of Twitter data for different needs.  
For example, we have looked at (1) information diffusion, where the goal was to 
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understand how URLs diffuse in the network; (2) psychographic profiling of 
aggregate streams, where we aggregate tweets and generate a set of concepts that 
those tweets discuss—this was used to understand retweet behaviors; (3) social 
dialogues and how they induce social networks—this case is probably closer to the 
spirit of dynamic networks we wanted to explore in this effort.  While we continue 
with these data and now better understand how to extract networked data, it cannot 
be used as a public benchmark data set due to Twitter terms of use. 

Financial data: We have identified a site: www.insider-monitor.com, which 
contains information about insider trading.   While we downloaded data from this 
site, we found the networked data to be too sparse to be really useful by itself. 

Email data: The Enron email data set is small (150 users), but very rich and covers 
a 2 year period.  We have explored this data in some detail and it turns out to be a 
very good small-scale network to develop new methods for. 

World-trade data: We acquired data on global trade between countries.  This data 
is a yearly snapshot since 1962 of how much trade (import and export) was done 
between different countries.   In addition, these are split up by industry codes.   We 
have started exploring the usefulness of this data at a global scale and hope to have 
results within the next couple of months.   As with the Enron data, the number of 
nodes is in the low 200’s and so the network is relatively small. 

Movies: This data set comes from IMDb and is rich in the sense that it has a long 
history, it has different types of nodes, relations and attributes.  We have not yet 
looked at this for analytics or predictions.   It is not immediately clear whether this 
is an interesting data set. 

SNAP: The Stanford Network Analysis project have numerous data sets, some of 
which are dynamic in nature.  The dynamic networks are citation networks as well 
as some news (memes and twitter).   While we have looked at citation networks 
already, it is not immediately clear that the other networks are good benchmark 
data for this effort. 

In summary, we have identified numerous potential benchmark data sets.  Part of 
making these benchmarks also include how they are used and the results we obtain 
from them.    This task is therefore work-in-progress, which we expect to continue in 
a future research effort. 

6. Conclusion 
The overarching goal of this effort is to improve our understanding and technologies 
for analyzing and managing dynamic networks.   To this end, we have focused on 
three general tasks: (1) Developing new metrics in social networks to identify 
central people in dynamic networks.  These metrics can also be used in other 
applications such as community detection and diffusion; (2) we have looked at 
developing richer analytic and predictive models of social behaviors in dynamic 
social networks such as predicting whether a person is about to leave a community 
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or retweet a particular post; and (3) creating benchmark data sets so that we have a 
principled way of analyzing and comparing our work to monitor progress. 

We have made good progress in all three general tasks, showing how our dynamic 
metrics provide insight and ranking of people in ways which are lost when not 
taking time into account.   Our metrics use not only time, but is also informed by 
social theories such as attention (eg., Dunbar’s number) and we have shown how 
attention and similarity are strong indicators of similar activities. 

Our work on predictive modeling was only starting, but we already made good 
progress on understanding some of the fundamentals such as representation, 
leveraging node attributes and we were able to get initial preliminary results on 
predicting community and node behaviors.   We started analyzing social networks to 
understand what makes people retweet and we showed how homopholy was a 
strong indicator.  We further developed initial predictive models of whether 
communities were about to split or whether nodes were about to leave, using past 
metrics. 

Finally, we spent some time looking for and creating benchmark data sets which we 
could use to monitor progress.  For example, although Twitter has a lot of public 
data, it is not immediately clear how that can be turned into a salient dynamic 
network.  We looked at extracting social dialogues as one method.  We also looked in 
other domains such as email (the public Enron data set), movies (the freely available 
IMDb data), bibliometrics (many data), news (how words co-occur), world trade 
(publicly available) and finances (SEC trading, insider trading data).  At the end we 
focused on smaller and richer data (Enron, World trade) as well as the large 
networks we could generate from Twitter.   These were chosen as they align well 
with our larger research agenda in social media. 

7. Papers related to this effort 
Ghosh, R.; Kuo, T.-T.; Hsu, C.-N.; Lin, S.-D.; and Lerman, K. 2011. Time-aware 
Ranking in Dynamic Citation Networks.  In COMMPER 2011: Mining Communities and 
People Recommendations, Data Mining Workshops at ICDM, December. 
 
Hodas, N. and Lerman, K. 2012. How Visibility and Divided Attention Constrain Social 
Contagion. Submitted to Social Computing Conference. 
 
Lerman, K.; Intagorn, S.; Kang, J.-H.; and Ghosh, R. 2012. Using Social Proximity to 
Predict Activity in Social Networks. Submitted to ECML/PKDD. Also, presented as 
poster at the Int. Conf. on World Wide Web. 
 
Macskassy, S. A. 2011.  Why do people retweet? Anti-homophily wins the day!  In the 
Fifth International Conference on Weblogs and Social Media (ICWSM).  
 
Macskassy, S. A. 2012.  On the Study of Social Interactions in Twitter. To appear in the 
Sixth International Conference on Weblogs and Social Media (ICWSM).  
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Steeg, G. V.; Ghosh, R.; and Lerman, K. 2011.  What stops social epidemics?  In 
Proceedings of 5th International Conference on Weblogs and Social Media. 
 

References 
Lerman, K.; Ghosh, R.; and Kang, J.-H. 2010. Centrality Metric for Dynamic Network 
Analysis. In Proceedings of KDD workshop on Mining and Learning with Graphs 
(MLG), July. 
 
Michelson, M., and Macskassy, S. A. 2010. Discovering users’ topics of interest on 
twitter: A first look. In Proceedings of the Workshop on Analytics for Noisy, 
Unstructured Text Data (AND). 


	List of Figures
	List of Tables
	1. Project Motivation and Overview
	2. Project Status
	3. Metrics in Dynamic Networks
	3.1. Centrality in Dynamic Networks
	3.2. Time-aware Dynamic Centrality
	3.3. Dynamics-aware Social Proximity in Networks
	4. Predictive Models for Dynamic Networks
	4.1. Understanding Social Dynamics
	4.1.1. Modeling Retweet Behaviors
	4.1.2. Extracting and Analyzing Social Dialogues
	4.2. Dynamic Network Prediction
	5. Developing benchmark data sets
	6. Conclusion
	7. Papers related to this effort
	References



